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Abstract

A model has previously been developed for heat transfer in down grinding. A numerical solution algorithm was
used to solve the system of equations. In this paper, an exact solution is found for this set of equations. The e�ect

of the location of heat generation (i.e., at wear ¯ats or shear planes) is explored for three typical grinding
conditions: conventional grinding with aluminum oxide abrasives, creep feed grinding with aluminum oxide
abrasives, and conventional grinding with cubic boron nitride (CBN) abrasives. It is found that during grinding with

CBN, there is a strong e�ect of the assumed location of heat generation. 7 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The heat generated during grinding can lead to elev-
ated temperatures, causing thermal damage to the
workpiece material. For this reason, it is important to
be able to predict the temperatures which will develop

during grinding, so that the process parameters can be
adjusted to yield acceptable workpiece temperatures.
This paper addresses heat transfer during down grind-

ing. Fig. 1 illustrates that in down grinding, the work-
piece, wheel, and ¯uid move in the same direction
through the grinding zone of length `: In our previous

paper [1], a model was presented for heat transfer in
down grinding. This model used Duhamel's theorem to
solve the conjugate problem of heat transfer in the
workpiece, grains (of the wheel), and ¯uid, in order to

predict the workpiece surface temperature in the grind-
ing zone. A numerical solution algorithm was used. A
more e�cient numerical algorithm was developed by

Zhang and Faghri [2], and Ju et al. [3] solved a some-

what di�erent thermal model of grinding, also numeri-

cally. After developing the numerical solution in [1],

we realized that there is an exact, closed form solution

to this problem. In this paper, we will present the

closed form solution for the workpiece background

temperature, valid under either of two conditions: (a)

the grinding ¯uid remains liquid everywhere (i.e. no

®lm boiling), or (b) ®lm boiling occurs throughout the

entire grinding zone. When ®lm boiling occurs over a

portion of the grinding zone, and is liquid over the

remaining portion, we can no longer obtain a closed

form solution. This will be brie¯y discussed.

In this paper, we also extend the model to explore

the e�ect of the location of heat generation. Heat is

generated due to friction at the ``wear ¯ats'' where the

grains rub over the workpiece, and due to plastic de-

formation at the ``shear planes'' where a chip is being

removed (see Fig. 2). It is not well understood how the

total grinding power is distributed between these lo-

cations. We de®ne a parameter, Fsp, the fraction of the

total grinding power which is dissipated due to plastic
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deformation at the shear planes. We then consider the
dependence of the workpiece temperature on Fsp, for

three typical grinding conditions.

2. Theoretical analysis

In [1], we used the following form of Duhamel's the-
orem (written here assuming only one discontinuity in

the heat ¯ux at x � 0):

T�x� ÿ Ti �
�x
0

@q�x�
@x

1

h�xÿ x� dx� q�0�
h�x� �1�

where x is the coordinate measured along the surface
of the domain, T�x� is the surface temperature, Ti is

the inlet temperature at x � 0, q�x� is the heat ¯ux into
the domain at its surface, and h�x� is the ``heat transfer
coe�cient'' (i.e., the ratio of heat ¯ux, q, to surface

temperature rise T�x� ÿ Ti� for the case of uniform sur-
face heat ¯ux. In our more recent work, we have
found it advantageous to work with the alternative
form of Duhamel's theorem [4]:

T�x� ÿ Ti �
�x
0

q�x�@c
@x
�xÿ x� dx �2�

where c�x� is the in¯uence function, equal to the re-

ciprocal of h�x� from above. We, therefore, brie¯y give
the governing equations using this alternative form,
and show how they can be combined to yield a single

Nomenclature

Asp total area of shear planes divided by grinding
zone area

Awf total area of wear ¯ats divided by grinding

zone area
c speci®c heat
Fsp fraction of total grinding power dissipated at

shear planes
k thermal conductivity
` grinding zone length

`sp shear plane length
`wf wear ¯at diameter
q heat ¯ux
tc chip thickness

T temperature
vs wheel surface speed
vw workpiece speed

x coordinate in direction of motion

Greek symbols

e fraction of energy going into some domain

c in¯uence function
r density

Subscripts

av average value over grinding zone
c chip
f ¯uid

g grain
i inlet, at x � 0
in into workpiece
max maximum value in grinding zone

sp shear plane
tot total
w workpiece

wb workpiece background
wc workpiece under chip
wf wear ¯at

wg workpiece under grain

Fig. 1. Schematic drawing of down grinding. Fig. 2. Schematic drawing of grain and chip geometry.
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integral equation for the workpiece background heat
¯ux, which is in a di�erent form from the correspond-

ing equation in [1].
The model involves two subproblems: the wear ¯at

problem and the workpiece background problem. The

wear ¯at problem describes heat transfer at the inter-
face between a grain and the workpiece (see Fig. 2).
This problem consists of four equations in four

unknowns, Eqs. (3)±(6), below. The ®rst two equations
express the temperatures at the wear ¯at for the grain
and the workpiece, Tg and Twg, respectively. The third

equation states that these temperatures must be equal,
since the grain and workpiece are in contact at the
wear ¯at. The fourth equation indicates that the heat
¯uxes into the grain and workpiece, qg and qwg, add

up to the total heat ¯ux at the wear ¯ats, qwf. (Note
that in our previous work [1], we called this the total
grinding heat ¯ux, qgrind. However, in the present

work, we will later be allowing some heat generation
at the shear planes, so that heat generated at the wear
¯ats is only a portion of the total grinding power. This

is the reason for the change in notation.)

Tg�x� ÿ Ti �
�x
0

qg�x�
@cg

@x
�xÿ x� dx �3�

Twg�x� ÿ Twb�x� � qwg�x�cwg �4�

Tg�x� � Twg�x� �5�

qg�x� � qwg�x� � qwf �x� �6�

Eq. (4) has a di�erent form from the general equation

(2) because cwg is constant.
Note that the workpiece temperature rise underneath

the grain (Eq. (4)) is relative to the ``workpiece back-

ground temperature'' (Twb), that is, the temperature of
the workpiece at a point which is not directly under-
neath a wear ¯at. Therefore, we need another set of
equations for the workpiece background problem, Eqs.

(7)±(10), below. The ®rst two equations express the
temperatures along the surface for the ¯uid and work-
piece, Tf and Twb, respectively. The third equation

states that these temperatures must be equal, since the
¯uid is in contact with the workpiece surface (except at
the wear ¯ats). The fourth equation couples the sub-

problems together by stating that the heat ¯ux which
enters the workpiece under the wear ¯ats must either
remain in the workpiece (qwb) or convect into the ¯uid
(qf ).

Tf �x� ÿ Ti �
�x
0

qf �x�@cf

@x
�xÿ x� dx �7�

Twb�x� ÿ Ti �
�x
0

qwb�x�@cwb

@x
�xÿ x� dx �8�

Tf�x� � Twb�x� �9�

Awfqwg�x� � qwb�x� � �1ÿ Awf �qf �x� �10�

In Eq. (10), Awf is the total area of all the wear ¯ats

divided by the grinding zone area. Considering qwf �x�
as known, the unknowns appearing in the above
equations are: qwg, qwb, qg, qf , Twg, Twb, Tg, and Tf .

We have eight equations in eight unknowns.
The in¯uence functions obtained from [1] are as fol-

lows:

cwb�x� � 2
������������������������������
x=
ÿ
p�krc�wvw

�q
�11�

cf�x� � 2
����������������������������
x=
ÿ
p�krc�fvs

�q
�12�

cwg �
4

3

���������������������������������
`wf=

ÿ
p�krc�wvs

�q
�13�

cg�x� � 2g�x�
����������������������������
x=
ÿ
p�krc�gvs

�q
�14�

where

g�x� �
���
p
p
2

1ÿ eG
2x erfc Gx 1=2

Gx 1=2
,

G � 2

�������������������������������
kg=

�
rgcg` 2wfvs

�r �15�

In these equations, k, r, and c are the thermal conduc-
tivity, density, and speci®c heat, respectively. The sub-

scripts w, f, and g stand for workpiece, ¯uid, and grain
materials. The symbols vw and vs are the workpiece
and wheel surface speeds, respectively, and `wf is the

diameter of an individual wear ¯at (see Fig. 2). Substi-
tuting Eqs. (7) and (8) into Eq. (9) yields an integral
equation relating qwb and qf . Noting that cwb and cf

have the same x-dependence, this equation can be
reduced to qf � Cfqwb, where

Cf � cwb

cf

�
��������������������
�krc�fvs

�krc�wvw

s
�16�

Substituting this result into Eq. (10) yields qwg � Bqwb,
where

B � 1� �1ÿ Awf �Cf

Awf

�17�

Then, Eq. (6) results in qg � qwf ÿ Bqwb: Next, substi-
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tuting Eqs. (3), (4) and (8) into Eq. (5), along with
these expressions for qwg and qg, yields the ®nal inte-

gral equation for qwb. This can be compared with Eq.
20 of [1]. They are in di�erent forms, but can be
shown to be equivalent:�x
0

qwb�x�
�
B
@cg

@x
�xÿ x� � @cwb

@x
�xÿ x�

�
dx

� Bcwgqwb�x�

�
�x
0

qwf �x�
@cg

@x
�xÿ x� dx �18�

To solve for qwb, we take the Laplace transform of

this equation. Using overbars to denote the transform,
we have:

qwb � qwf

B�
�
@cwb

@x � Bcwg

�
=
@cg

@x

�19�

Using Eqs. (11)±(14) for the in¯uence functions, and
taking the transforms, Eq. (19) becomes:

qwb � D
qwf

sÿ1=2�s� Es1=2 � F� �20�

where

D � 1

Bcwg

������������������krc�gvs

p � 1

B

3

4

��������
p
`wf

r
�21�

E � G� 1

cwg

������������������krc�gvs

p � 1

Bcwg

��������������������krc�wvw

p
� G�D

ÿ
B� Cg

� �22�

F � G

Bcwg

��������������������krc�wvw

p � DGCg �23�

Cg �
��������������������
�krc�gvs

�krc�wvw

s
�24�

For any arbitrary qwf �x�, it may or may not be poss-

ible to invert Eq. (20) in closed form. For the particu-
lar case of linear qwf �x�, which has been considered in
previous works [1±3], i.e., qwf �x� � 2qwf, av�1ÿ x=`�,
where qwf, av is the average value of qwf �x� and ` is the
length of the grinding zone, we have:

qwb � 2qwf, avD

�
1

s1=2�s� Es1=2 � F�

ÿ 1=`

s3=2�s� Es1=2 � F�
�

�25�

Inverting this gives the result for the workpiece back-
ground heat ¯ux:

qwb�x� � 2qwf, avD

F

�
1

`

�
E

F
ÿ 2���

p
p x 1=2

ÿ d

a
ea

2x erfc ax 1=2 ÿ c

b
eb

2x erfc bx 1=2

�

ÿ F������������������
E 2 ÿ 4F
p

ÿ
ea

2x erfc ax 1=2

ÿ eb
2x erfc bx 1=2

��
�26�

where

a, b � E2
������������������
E 2 ÿ 4F
p

2
�27�

c, d �
������������������
E 2 ÿ 4F
p

2E

2
������������������
E 2 ÿ 4F
p �28�

Based on the de®nitions of E and F, it can be shown
that

������������������
E 2 ÿ 4F
p

is always positive.
Finally, the workpiece background temperature can

be determined from Eq. (8). The result is:

Twb�x� ÿ Ti � qwf, av`wf

kg

(
1

`

�
E

F

2���
p
p x 1=2 ÿ x

ÿ d

a 2

ÿ
1ÿ ea

2x erfc ax 1=2
�

ÿ c

b 2

ÿ
1ÿ eb

2x erfc bx 1=2
��

ÿ F������������������
E 2 ÿ 4F
p

�
1

a

ÿ
1ÿ ea

2x erfc ax 1=2
�

ÿ 1

b

ÿ
1ÿ eb

2x erfc bx 1=2
��)

�29�

This has been evaluated for a variety of cases and has
been seen to agree with the numerical solutions pre-
sented in [1,2].

3. Heat generation at shear planes

The above solution assumes that all the grinding
power is dissipated at wear ¯ats (due to friction). In
reality, some of the power is dissipated at shear planes

due to plastic deformation. In this section, we develop
the exact solution accounting for heat generation at
shear planes, coupled with the heat transfer at wear
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¯ats in the previous section. Eq. (10) is modi®ed to
describe the fact that heat enters the workpiece under

the wear ¯ats (qwg) and the shear planes (qwc).

Awfqwg�x� � Aspqwc�x�

� qwb�x� �
ÿ
1ÿ Awf ÿ Asp

�
qf�x� �30�

where Asp is the total area of all the shear planes
divided by the grinding zone area. Next, we must
develop the heat transfer problem at the shear planes

[5]. The shear plane problem describes heat transfer at
the interface between a chip and the workpiece (see
Fig. 2). This problem consists of four equations in
four unknowns, Eqs. (31)±(34), below. The ®rst two

equations express the temperatures at the shear plane
for the chip and the workpiece, Tc and Twc, respect-
ively. The third equation states that these temperatures

must be equal, since the chip and workpiece are in
contact at the shear plane. The fourth equation indi-
cates that the heat ¯uxes into the chip and workpiece,

qc and qwc, add up to the total heat ¯ux at the shear
planes, qsp:

Tc�x� ÿ Twb�x� � qc�x�cc �31�

Twc�x� ÿ Twb�x� � qwc�x�cwc �32�

Tc�x� � Twc�x� �33�

qc�x� � qwc�x� � qsp�x� �34�

where the in¯uence functions are as follows [5]:

cc � `sp=�rc�wtcvs �35�

cwc �
4

3

��������������������������������
`sp=

ÿ
p�krc�wvs

�q
�36�

In these equations, `sp is the length of the shear plane

and tc is the chip thickness (see Fig. 2).
Eqs. (31)±(34) can be easily solved to yield:

qwc � cc

cc � cwc

qsp �37�

We will assume that both the wear ¯at and shear plane

heat ¯uxes are linearly distributed through the grinding
zone as previously. That is, qwf �x� � 2qwf, av�1ÿ x=`�
and qsp�x� � 2qsp, av�1ÿ x=`�: Furthermore, we de®ne

the total grinding heat ¯ux, qtot, to be the total grind-
ing power divided by the grinding zone area, and let
Fsp be the fraction of the total grinding power which is

generated at the shear planes due to plastic defor-
mation. Then, noting that all the de®ned heat ¯uxes
are based on di�erent areas, we can write that qwf; av�

�1ÿ Fsp�qtot=Awf and qsp, av � Fspqtot=Asp: Repeating the
entire solution procedure outlined earlier, we can ®nd

the new expression for the workpiece background tem-
perature, including the e�ect of heat generation at the
shear planes. This is given below in terms of the total

grinding heat ¯ux, qtot.

Twb�x� ÿ Ti � qtot`wf

kgAwf

8<:J
(
1

`

�
E

F

2���
p
p x 1=2 ÿ x

ÿ d

a 2

ÿ
1ÿ ea

2x erfc ax 1=2
�

ÿ c

b 2

ÿ
1ÿ eb

2x erfc bx 1=2
��

ÿ F������������������
E 2 ÿ 4F
p

�
1

a

ÿ
1ÿ ea

2x erfc ax 1=2
�

ÿ 1

b

ÿ
1ÿ eb

2x erfc bx 1=2
��)

ÿ K

(
1

`

�
1

F

2���
p
p x 1=2

� c

a3

ÿ
1ÿ ea

2x erfc ax 1=2
�

� d

b3

ÿ
1ÿ eb

2x erfc bx 1=2
��

�
�
c

a
ea

2x erfc ax 1=2

� d

b
eb

2x erfc bx 1=2

�)9=; �38�

where

J � 1ÿ Fsp � FspH

0@1� 8

3

�������������������������������
�krc�g
�krc�w

kg=rgcg

p`wfvs

s 1A �39�

K � FspHCgG

B

���������������
�krc�g
�krc�w

s
�40�

and

H � cc

cc � cwc

�41�

In Eq. (38), all parameters have their de®nitions as

given earlier, except that B is modi®ed as follows:

B � 1� ÿ1ÿ Awf ÿ Asp

�
Cf

Awf

�42�
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If Fsp � 0 and Asp � 0, then noting that under these
conditions qtot � qwf, avAwf , we recover the earlier Eq.

(29).
It should be noted that the analysis presented in this

section assumes that there is no heat transfer between

the grain and the chip through their region of contact.
The implications of this assumption will be discussed
in Section 6.

4. Film boiling of grinding ¯uid

It has been established that grinding ¯uid can
undergo ®lm boiling when its temperature exceeds a
critical value (referred to hereafter as the ®lm boiling

temperature). For a water based grinding ¯uid, the
®lm boiling temperature is around 1308C [6]. When
®lm boiling occurs, the heat transfer to the ¯uid
becomes negligible. If ®lm boiling occurs over the

entire grinding zone, then the solution above is valid
with Cf set to zero to eliminate heat transfer to the
¯uid. However, ®lm boiling may occur over only a

portion of the grinding zone. In this case, the above
solution is valid in the region before ®lm boiling
occurs (i.e., before the ®rst location at which the tem-

perature equals the ®lm boiling temperature), but is
invalid thereafter. We have been unable to ®nd an
exact solution for the situation in which ®lm boiling

occurs over only a portion of the grinding zone. The
true solution is bounded by the solutions assuming no
®lm boiling and complete ®lm boiling, although these
bounds can be quite far apart. Of course, the solution

can also be determined numerically.

5. Upgrinding

A brief word is in order regarding the di�erence
between down grinding and upgrinding. In upgrinding,

the wheel (and ¯uid) move in the opposite direction
from the workpiece as they move through the grinding
zone. This alters the nature of the mathematical

problem. Without being rigorous, we can say that the
down grinding problem is parabolic, since the con-
ditions at some x depend only on the inlet conditions
at x � 0: In contrast, the upgrinding problem is ellip-

tic, since the conditions at some x depend on the inlet
conditions at both ends of the grinding zone, x � 0, `:
Because of this, we have not been able to ®nd an exact

solution to the upgrinding problem. However, it has
been solved numerically in [7], using a much more e�-
cient algorithm than we had used previously for down

grinding in [1]. Ju et al. [3] have also solved the
upgrinding problem using somewhat di�erent model
assumptions.

6. Discussion

An example of the distribution of workpiece back-
ground temperature (equal to the ¯uid temperature)
through the grinding zone is shown in Fig. 3. The con-

ditions are those described in Case I below, with Fsp �
0:35: It can be seen that the temperature initially
increases as the workpiece and ¯uid are heated as they

move through the grinding zone, but eventually the
temperature decreases because of the decreasing heat
¯ux. The temperature exceeds the ®lm boiling tempera-

ture for a water based grinding ¯uid, but is not high
enough to cause metallurgical changes (e.g., reausteni-
tization) for steels.
As noted earlier, this same model of grinding has

been solved numerically for the case of Fsp � 0 [1,2].
Therefore, the only new results we will present here are
to show the e�ect of Fsp. This e�ect was explored in

an earlier paper [5], but using an approximate grinding
model.
The distribution of the total grinding power between

frictional heating at wear ¯ats and plastic deformation
at shear planes is not well known or understood, and
is di�cult to determine experimentally. Malkin and

Anderson [8] have measured the grinding power as a
function of wear ¯at area. Extrapolating this curve to
zero wear ¯at area should give the rate of heat gener-
ation at shear planes. Then, for realistic values of wear

¯at area, the percentage of the total grinding power

Fig. 3. Sample workpiece background temperature distri-

bution.
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which is dissipated at shear planes can be determined.
For conventional grinding conditions, using conven-

tional abrasives, Malkin and Anderson's data suggest
a typical value of about 35% for the shear plane heat
generation. This percentage would change as a func-

tion of all the parameters describing the grinding con-
ditions, such as wheel dressing conditions, depth of
cut, type of abrasive, etc. For example, Fsp would

probably be higher for grinding with cubic boron
nitride (CBN) abrasives, since they tend to be sharper,
and therefore, generate less heat at wear ¯ats due to

friction.
We will explore the e�ect of Fsp by considering three

types of grinding.

. Case I: conventional grinding conditions with alumi-
num oxide abrasive.

. Case II: creep feed grinding conditions (low work-
piece speed, large depth of cut) with aluminum

oxide abrasive.
. Case III: conventional grinding conditions with

CBN abrasive.

The grinding conditions are shown in Table 1. The
conventional grinding conditions with both aluminum
oxide and CBN abrasives are taken from the exper-

imental conditions of Kohli et al. [9]. These experimen-
tal conditions were for upgrinding, but we use them
here as an example for down grinding. The creep feed

grinding conditions are identical to the conventional
grinding conditions with aluminum oxide abrasive,
except that the workpiece speed is lowered to vw � 1
mm/s and the depth of cut is raised to give the same

material removal rate (which increases the grinding
zone length, `). The grinding power is assumed to be

the same, since to ®rst order it is dependent on ma-
terial removal rate. (These same conditions were inves-
tigated by Ju et al. [3] using a di�erent grinding

model.) Demetriou and Lavine [7] explain how the
values of the parameters describing the small scale ge-
ometry of grains and chips (i.e., Awf, `wf , Asp, `sp, tc)

are determined from the given wheel speci®cation and
grinding conditions.
When the temperature was calculated for Case I

assuming that the grinding ¯uid remained liquid, the
temperature was seen to exceed the ®lm boiling tem-
perature of 1308C throughout the large majority of the
grinding zone. This is typical of conventional grinding

with aluminum oxide abrasives. Therefore, it was sub-
sequently assumed that the grinding ¯uid would boil
everywhere, the heat transfer to the ¯uid was set to

zero, and the temperature was recalculated. On the
other hand, temperatures for Cases II and III typically
remained below the ®lm boiling temperature (with

some exceptions), so those cases were run assuming
that the grinding ¯uid remained liquid throughout the
grinding zone.

For each of these three cases, we calculate the work-
piece background temperature for varying Fsp. The
results for the maximum workpiece background tem-
perature rise �Twb, max ÿ Ti� are shown in Fig. 4. The

results show the sensitivity of the predicted tempera-
ture to Fsp, i.e., the error incurred by not knowing Fsp

Fig. 4. Maximum temperature vs. Fsp.

Table 1

Input data for three grinding cases

Case I Case II Case III

kw (W/m K) 60.5 60.5 60.5

rw (kg/m3) 7854 7854 7854

cw (J/kg K) 434 434 434

kf (W/m K) 0.68 0.68

rf (kg/m
3) No ¯uid 1000 1000

cf (J/kg K) 4180 4180

kg (W/m K) 46 46 1300

rg (kg/m3) 4000 4000 3450

cg (J/kg K) 770 770 506

vs (m/s) 30 30 30

vw (mm/s) 150 1.0 135

` (mm) 2.5 30.6 2.5

Grinding power (W) 1670 1670 1280

qtot (W/mm2) 66.8 5.45 51.2

Awf 0.009 0.009 1:8� 10ÿ5

`wf (mm) 63 63 1.0

Asp 5:7� 10ÿ4 5:7� 10ÿ4 5:2� 10ÿ4

`sp (mm) 12 12 4.0

tc (mm) 1.0 1.0 0.34
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accurately. It can be seen that for both conventional
and creep feed grinding conditions with aluminum

oxide abrasives (Cases I and II), there is very little
dependence on Fsp. Temperature decreases slightly
with increasing Fsp: the range is only 368C for Case I

and 108C for Case II. On the other hand, for conven-
tional grinding conditions with CBN abrasives (Case
III), the temperature increases rapidly with increasing

Fsp, with a range of 1538C. For values of Fsp greater
than about 0.6, water based grinding ¯uid would
undergo ®lm boiling, and the temperature would be

even higher than what is shown.
We will now discuss and explain the dependence of

the workpiece background temperature on Fsp. The
grinding heat transfer problem is clearly a coupled

problem of conduction in the wheel, workpiece, and
¯uid. We can imagine decoupling the problems so that
we isolate the workpiece background heat transfer pro-

blem (Eqs. (7)±(9), (30)) with speci®ed heat input to
the workpiece at the wear ¯ats and shear planes (qwg,
qwc). From this perspective, Fsp a�ects the problem

because it a�ects qwg and qwc. More speci®cally, it
a�ects the left-hand side of Eq. (30), which is an ex-
pression for the total heat ¯ux entering the workpiece.

As a means to understand the e�ect of Fsp, we will
examine the total rates at which heat enters the work-
piece (ignoring the dependence on the distribution of
the heat ¯ux with x ) at the wear ¯ats and shear

planes.
We de®ne ewg as the fraction of the heat generated

at the wear ¯ats which enters the workpiece under the

grains, and ewc as the fraction of the heat generated at
the shear planes which enters the workpiece under the
chips. Then the fraction of the total grinding power

which enters the workpiece, ein, is given by:

ein � ewg

ÿ
1ÿ Fsp

�� ewcFsp �43�

For future discussion, we also de®ne ewb as the fraction
of the total grinding power which remains in the work-

piece and ef as the fraction of the total grinding power
which is removed by the ¯uid. Then, ewb � ef � ein: All
of these ``fractions'' are referred to as ``partitions'' in

the ®gure titles which follow.
Fig. 5 shows ewg, ewc, and ein as functions of Fsp for

Cases I and II. It can be seen that the two cases ex-
hibit very similar behavior. In fact, ewc is the same con-

stant value for both cases; it can be shown that
ewc � H (see Eqs. (37) and (41)), and H depends only
on workpiece properties, shear plane geometry, and

wheel speed, which are all the same for Cases I and II.
The fact that ewc is constant can be explained on physi-
cal grounds because both the heat ¯ux to the chip and

the heat ¯ux to the workpiece under the chip are pro-
portional to the same temperature di�erence, Twc ÿ
Twb (cf. Eqs. (31)±(33)). Therefore, the fraction of heat

entering the workpiece under the chip is independent
of this temperature di�erence and thus independent of

Fsp.
In contrast, considering heat transfer at the wear

¯ats, the heat ¯ux to the grain depends on Twg ÿ Ti

and the heat ¯ux to the workpiece under the grain is
proportional to Twg ÿ Twb (cf. Eqs. (3)±(5)), resulting
in a non-constant ewg: It can be seen that ewg is nega-

tive for Fsp greater than approximately 0.8. The reason
is that as Fsp increases, the grinding power is being
moved away from the wear ¯ats and to the shear

planes (by de®nition of Fsp as the fraction of heat gen-
erated at shear planes). The temperature at the shear
planes (Twc) therefore increases, and the temperature
at the wear ¯ats (Twg) decreases. When Twg decreases

below Twb, heat can conduct from the workpiece to
the wear ¯at; this corresponds to negative ewg: Then all
of the heat generated at the wear ¯ats, plus some ad-

ditional heat coming from the workpiece, can enter the
cooler grains.
We can also see that ein lies between ewc and ewg, as

it must, since it is a weighted average of the two. For
Fsp near zero, ewg and ewc are fairly close to each
other, so the weighted average does not change much

as Fsp changes. Then, as ewg begins to decrease rapidly,
it does not cause large variation in ein, because 1ÿ Fsp

is becoming small. It appears from a cursory look at
Eq. (43) that when Fsp � 1, ein should be equal to ewc:
However, the reality is that, as Fsp goes to 1, ewg

approaches ÿ1, and the quantity ewg �1ÿ Fsp� is ®nite

Fig. 5. Partitions for Cases I and II.
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and non-zero. Physically, we can understand that when
Fsp goes to 1 it does not mean that heat transfer to the

workpiece is determined only by what is happening at
the shear planes. Rather, the wear ¯ats still play a role
by providing a path for heat transfer from the work-

piece to the grains, thereby reducing ein:
Fig. 6 shows the same kind of results for Case III.

The situation here is very di�erent. Because of the

high thermal conductivity of CBN grains, much more
of the heat generated at the wear ¯ats goes to the
grains than to the workpiece under the grains. There-

fore, ewg is very small. It shows a decreasing trend as
in the other cases, and again it approaches ÿ1 as Fsp

goes to 1, although it remains nearly constant over a
broader range of Fsp. Since the magnitudes of ewc and

ewg are very di�erent, as Fsp varies, ein varies signi®-
cantly, increasing with increasing Fsp. Although it
appears that ein � ewc when Fsp � 1, it is not an exact

equality. Just as in Cases I and II, ewg�1ÿ Fsp� is non-
zero (but small) when Fsp � 1:
To reiterate, when grinding with CBN abrasives, the

fraction of heat going to the workpiece at the wear
¯ats is much less than the fraction of heat going to the
workpiece at the shear planes. Thus, the assumed

value of Fsp has a dramatic e�ect on the total heat
entering the workpiece and consequently on the work-
piece background temperature.
Recall that the analysis assumed no heat transfer

between the grain and the chip through their region of

contact. In reality, conduction would tend to reduce

the temperature di�erence between the grain and the

chip and consequently reduce the dependence on Fsp.

A detailed analysis has been performed of the e�ect of

conduction between the grain and the chip. Without

presenting it here, the conclusions will be brie¯y sum-

marized. First, it should be noted that conduction

between the grain and the chip is strongly dependent

on their contact area, which is not well known. This

contact area was assumed equal to the shear plane

area. Accounting for grain±chip conduction was found

to have a negligible e�ect on the workpiece back-

ground temperature for Cases I and II (which already

showed little dependence on Fsp). For Case III (CBN

grains), the e�ect of grain±chip conduction was signi®-

cant. Recalling from Fig. 4 that the temperature range

for Case III was 1538C, this temperature range would

be reduced approximately to half by the e�ect of con-

duction between the grain and the chip. Despite this

reduction, the e�ect of Fsp on workpiece background

temperature would still be much more signi®cant for

Case III than for Cases I and II.

Next, comparing Cases I and II, recall that they

were assumed to have the same grinding power, and

their values for ein are very similar (Fig. 5), so heat

enters the workpiece at about the same rate. It is then

reasonable to ask why their workpiece background

temperatures are so di�erent (cf. Fig. 4). The reason

stems from the di�erent grinding zone lengths (see

Fig. 6. Partitions for Case III. Fig. 7. Workpiece and ¯uid partitions for Case II.
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Table 1). Since the grinding zone length is much
shorter for conventional grinding (Case I) than for

creep feed grinding (Case II), the heat ¯ux entering the
workpiece is much greater. This results in a much
higher workpiece temperature in conventional grind-

ing. If this were the only e�ect at work, the tempera-
ture rise would scale as `ÿ1=2 due to the changes in
heat ¯ux and cwb (see Eqs. (8) and (11)). This results

in temperature rises for conventional grinding which
are higher than those in creep feed grinding by a factor
of 3.5. The temperature rise in creep feed grinding is

on the order of 708C (as seen in Fig. 4), so the tem-
perature rise in conventional grinding would be around
2508C. But since these temperatures are high enough
to cause ®lm boiling of the grinding ¯uid, the heat loss

to the ¯uid becomes negligible, resulting in even higher
temperatures in conventional grinding, as shown in
Fig. 4. Thus, for Case I, the fraction of the grinding

power which enters the workpiece is the same as the
fraction which remains in the workpiece, i.e., ein � ewb:
In contrast, for Case II, ewb < ein: Fig. 7 shows ein, ewb,

and ef for Case II. Much more heat is removed by the
¯uid than by the workpiece itself, because the ¯uid
travels much faster, more than compensating for its

lower thermal conductivity.
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